Complete List of Trigonometry Formulas for CGL CHSL Exams

Trigonometric Formulas:
Applying Pythagoras theorem for the given right-angled theorem, we have:

(Perpendicular)2+(Base)2=(Hypotenuese)2
(P)2+(B)2=(H)2

The Trigonometric properties are given below:


S.no
Property
Mathematical value
1
sinA
PH
2
cosA
BH
3
tanA
PB
4
cotA
BP
5
cosecA
HP
6
secA
HB
Relation Between Trigonometric Identities:

S.no
Identity
Relation
1
tanA
sinAcosA
2
cotA
cosAsinA
3
cosecA
1sinA
4
secA
1cosA
Trigonometric Identities:

  1. sin2A+cos2A=1

  1. tan2A+ 1 =sec2A

  1. cot2A+ 1 =
    cosec2A



Trigonometry Negative Formulas
sin(θ)=sinθ
cos(θ)=cosθ
tan(θ)=tanθ
cosec(θ)=cosecθ
sec(θ)=secθ
cot(θ)=cotθ
Product to Sum Formulas
sinx siny=12[cos(xy)cos(x+y)]
cosxcosy=12[cos(xy)+cos(x+y)]
sinxcosy=12[sin(x+y)+sin(xy)]
cosxsiny=12[sin(x+y)sin(xy)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(xy2)
sinxsiny=2cos(x+y2)sin(xy2)
cosx+cosy=2cos(x+y2)cos(xy2)
cosxcosy=2sin(x+y2)sin(xy2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBcosAsinB cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB tan(A+B)=tanA+tanB1tanAtanB tan(AB)=tanAtanB1+tanAtanB cos(A+B)cos(AB)=cos2Asin2B=cos2Bsin2A sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2A sin2A=2sinAcosA=2tanA1+tan2A cos2A=cosAsin2A=12sin2A=2cos2A1=1tan2A1+tan2A tan2A=2tanA1tan2A cos3A=4cos3A3cosA=4cos(60A).cosA.cos(60+A) tan3A=3tanAtan3A13tan2A=tan(60A).tanA.tan(60+A) sinA+sinB=2sinA+B2cosAB2


Definition
θ=sin1(x)isequivalenttox=sinθ
θ=cos1(x)isequivalenttox=cosθ
θ=tan1(x)isequivalenttox=tanθ
Inverse Properties
sin(sin1(x))=x
cos(cos1(x))=x
tan(tan1(x))=x
sin1(sin(θ))=θ
cos1(cos(θ))=θ
tan1(tan(θ))=θ
Double Angle and Half Angle Formulas
sin(2x)=2sinxcosx
cos(2x)=cos2xsin2x
tan(2x)=2tanx1tan2x
sinx2=±1cosx2
cosx2=±1+cosx2
tanx2=1cosxsinx=sinx1+cosx