S.no
|
Property
|
Mathematical value
|
1
|
sinA
|
PH
|
2
|
cosA
|
BH
|
3
|
tanA
|
PB
|
4
|
cotA
|
BP
|
5
|
cosecA
|
HP
|
6
|
secA
|
HB
|
S.no
|
Identity
|
Relation
|
1
|
tanA
|
sinAcosA
|
2
|
cotA
|
cosAsinA
|
3
|
cosecA
|
1sinA
|
4
|
secA
|
1cosA
|
Trigonometry Negative Formulas
|
sin(−θ)=−sinθ |
cos(−θ)=cosθ |
tan(−θ)=−tanθ |
cosec(−θ)=−cosecθ |
sec(−θ)=secθ |
cot(−θ)=−cotθ |
Product to Sum Formulas
|
sinx siny=12[cos(x–y)−cos(x+y)] |
cosxcosy=12[cos(x–y)+cos(x+y)] |
sinxcosy=12[sin(x+y)+sin(x−y)] |
cosxsiny=12[sin(x+y)–sin(x−y)] |
Sum to Product Formulas
|
sinx+siny=2sin(x+y2)cos(x−y2) |
sinx−siny=2cos(x+y2)sin(x−y2) |
cosx+cosy=2cos(x+y2)cos(x−y2) |
cosx−cosy=–2sin(x+y2)sin(x−y2) |
Definition |
θ=sin−1(x)isequivalenttox=sinθ |
θ=cos−1(x)isequivalenttox=cosθ |
θ=tan−1(x)isequivalenttox=tanθ |
Inverse Properties
|
sin(sin−1(x))=x |
cos(cos−1(x))=x |
tan(tan−1(x))=x |
sin−1(sin(θ))=θ |
cos−1(cos(θ))=θ |
tan−1(tan(θ))=θ |
Double Angle and Half Angle Formulas
|
sin(2x)=2sinxcosx |
cos(2x)=cos2x–sin2x |
tan(2x)=2tanx1–tan2x |
sinx2=±√1–cosx2 |
cosx2=±√1+cosx2 |
tanx2=1−cosxsinx=sinx1+cosx |